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Numerical Modeling of Drug Delivery in Solid Tumor Microvasculature 

I. Abstract 

 
The heterogeneity of the microvascular network generated by tumor angiogenesis has been            
identified as one of the causes of unsuccessful treatment of a malignant tumor. [1] The               
microvascular organization of a tumor can affect the method of dosage on a patient-by-patient              
basis. Based on clinical findings, most cancer drug treatments fail to eliminate malignant tumor              
completely. [1] However, a stronger dose of the drug may in fact have more serious repercussions                
on the surrounding healthy tissue. To better understand the individual patient’s reaction to a              
cancer drug such as Doxorubicin, solid tumor modeling and simulation is used to compute such               
parameters as ideal dosage, dose frequency, dose toxicity to tumor, and dose toxicity to              
surrounding healthy cells. 

II. Introduction 

High vascular variance is a major barrier to effective localized drug dosing to tumor sites. [1]                
The quantification, and therefore personalization, of cancer drug dosage perfusion into a tumor             
could have significant implications in patient care, including minimization of toxic drugs to             
healthy tissue, maximum effective dosage and dose frequency data for a particular patient, and              
dosage method.  
The modeling of cancer drug delivery to solid tumor microvasculature is multi-scale in nature.              
On the macroscopic level, parameters such as tumor size, tumor shape, tumor density, and tumor               
vasculature, including changing radii of capillaries must be taken into account. On the             
microscopic level, blood flow, hematocrit levels, blood viscosity, fluid levels, lymphatic drainage,            
and material properties must be taken into account. In addition to these dynamic physiological              
morphologies and mechanisms, our inputs to the system, such as drug concentration, frequency,             
and input type change the concentration gradient output. The image below shows the order scales               
of these parameters within the system. 

 
Fig. 1: Order Scales of Tumor Model (Sefidgar et al.) 
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In some cases, the location of the bolus, or dosage of cancer drug to the tumor, can significantly                  
alter the effectivity of dosage.  Consider the image below. 
 

   
Fig. 2: Patient-Specific Tumor Vasculature Example 

 
In this image, the arrows point to locations where the drug could be injected. Although it visually                 
looks like injecting into the largest vasculature upstream of the tumor would deliver the greatest               
toxicity to the tumor, this vessel is also adjacent to healthy tissue, and may cause significant                
complications to healthy tissue. Therefore, a drug perfusion model with discrete input locations,             
vasculature geometry, and patient-specific parameters determined from routine blood work could           
be beneficial to patient-specific dosage efficacy of cancer drugs. 

III.  Background and Consideration of Current Models 

There have been numerous attempts to devise a model for transport of a drug by taking into                 
account diffusion, convection, and pressure gradients as well as adaptive vessel diameter and             
parameters of the blood flowing within the capillary itself. It is incredibly complex to assimilate               
all these variables that are changing continuously into one useful tool, but one approach that has                
achieved some success is the Sefidgar model. The model utilizes finite differences to update              
vessel diameter and interstitial pressure then calculate the diffusion and convection terms through             
the following equation [1]:  

              (1) 
The model was primarily used to investigate differences in the delivery to healthy tissue versus               
tumor tissue, and considers the influence of a nearby blood vessel. For all situations, there are                
terms for diffusion and convection of the drug within the interstitial fluid. In the vicinity of a                 
blood vessel, terms for diffusion and convection between the vessel and surrounding interstitial             
fluid are included. Lastly, in healthy tissue a term is added for lymphatic drainage, while this                
term is neglected in the case of tumor tissue, as only a blood vessel network develops within the                  
tumor not a lymphatic network.  These conditions are summarized in the following [1]: 
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                             (2) 

IV. Mathematical Model: Assumptions and Simplifications 

To look at one part of the overall process of drug delivery across the capillary wall, diffusion in                  
the interstitial fluid alone may be considered. Since the distance of transport is so small, it can be                  
assumed that diffusion dominates over convection. The problem can be set up in cylindrical              
coordinates, and the axes are defined in a way to align with a few assumptions. The simplified                 
diagram of a capillary running through a tumor is presented below: 

 
Fig. 3: Diagram of tumor and capillary orientation 

 
The diffusion is assumed to be one-dimensional. The diffusion is symmetric with respect to θ and                
z, and the axes are defined such that r = 0 corresponds to the capillary wall. The plasma                  
concentration of doxorubicin can be determined through experimentation, and it is assumed that             
this is equal to the concentration of the drug at the capillary wall, at r = 0.  

 
Further, the delivery of the drug can be modeled as approximately a sinusoidal curve if the mode                 
of delivery is an intravenous drip, where the sinusoidal function takes into account the frequency               
of the drops. This absolute value of the sinusoidal function is used, since there are no negative                 
volumes drops of drug delivered. 
 
The diffusion equation is utilized as presented below: 

 D ∇ C D∂t
∂C =  ef f

2 =  ef f ∂r
∂C         (3) 
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The initial condition is the concentration at the vessel wall at time t = 0 is the plasma                  
concentration times the delta impulse function: 

(r , ) C δ(t)C = 0 0 =  o  
 
Boundary conditions are defined at the capillary wall (r = 0) and at a distance far away from the                   
capillary (r = L): 

 where T = period of IV drip(r , ) C  C = 0 t =  o sin( t)|
| T

2π |
|  

(r , ) 0C = L t =   
| 0∂r

∂C
r=L,t =   

At the distance L far from the capillary, the concentration of the drug and the rate of change of                   
drug concentration are both zero.  

III. Mathematical Model: Analytical Solution 

For long distances of solute transport, convection dominates the equation (for example, in the              
peclet number calculation given capillary size, velocity of blood flow, and diffusion coefficient of              
drug). 
However, since the distance from capillary to tumor in our model is quite small, diffusion is the                 
only significant component of the equation. Thus, convection is negligibly small and is thus              
ignored.  

 
When only diffusion of drug in the tissue in the radial is considered, the Sefidgar equation                
describing our model reduces to the form of the diffusion/heat equation.  
 

) -   for normal tissue D (rdt
dC =  ef f r

1 d
dr dr

dC  ϕL  
) for cancerous tissue D (rdt

dC =  ef f r
1 d

dr dr
dC         (4) 

 
To solve the the diffusion equation in cylindrical coordinates analytically for the concentration             
profile in the radial direction and arrive at a closed-form solution, we further simplified our initial                
conditions and boundary conditions as follows: 
 

1)  (Boundary Condition 1) at r dr
dC(t,r) = 0 = 0  

2) (Boundary Condition 2)(t, ) 0 at r C r =  = rf  
3) for  (Initial Condition)(t, ) (r)  C r = f = Q t = 0  

 
 
To solve this equation, the method of separation of variables is used. In this method, we assume                 
that the solution to the partial differential equation (PDE) can be written as the product of a                 
function of only  and a function of only  . Thus, we have:t T (t))( r R(r))(  

(t, ) (t) (r)C r = T * R         (5) 
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Next, we plug this new expression for into the initial PDE. Gathering the terms that only       (t, )C r           
have on one side of the equation and the terms that only have on the other side of the equation t             r         
we have: 

= D (r )T (t)
T (t)′  ef f

1
r R(r)*

d
dr dr

dR          (6) 
 
This equation can only be true when both sides are equal to a constant. Setting both sides of the                   
equation to the constant , we obtain two ordinary differential equations that can be solved    − λ2            
independently and whose solutions can be combined later to obtain the solution to the initial               
partial differential equation:   

 and − λT (t)
T (t)′ = Def f

2 − −>  λ  R (r )1
r R(r)*

d
dr dr

dR  = λ2 − r2
dr2
d Re

+ r dr
dR + r 2 2 = 0           (7) 

 
The solution to the ODE in   is simply a decaying exponential:t  

(t) K exp(− λ )T =  1 Def f
2

* t         (8) 
 
The ODE in is in the form of Bessel’s differential equation. The general solution to the ODE in   r                 

is thus a sum of two Bessel functions:r  
(r) (λr )R = K2 * J0  + (λr)K3 * Y 0          (9) 

 
is a Bessel function of the first kind of order zero and is a Bessel function of the(λr )J0               (λr)Y 0        

second kind of order zero. In general, Bessel functions can be precisely defined using their series                
expansions. The general shape of Bessel functions of the first kind and second kind are shown                
below:  
 

 
      Bessel functions of the first kind       Bessel functions of the second kind 

Fig. 4: Bessel functions [6] 
 

As the graphs above show, Bessel functions of the second kind diverge toward negative infinity               
as their argument approaches zero. Thus, since the solution to the diffusion equation must be               
bounded at , the constant must be equal to zero, and our equation in becomes:  r = 0    K3         r  

(r) (λr )R = K2 * J0        (10) 
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Next, since, our right boundary condition is  , it is required that:(t) 0 at r C =  = rf  
(λr ) 0R(r )f = J

0 f =    
(λ r ) 0J0 n f =   

 
This above equation defines the eigenvalues and eigenfunctions for this problem.     )(λn    J (λ r))( 0 n     
The eigenvalues( can be found by looking up the roots of the Bessel function in a reference )λn             J0    
table. Now that we have solutions to both ODEs, we can combine them to find a particular                 
solution to the original PDE.  

*(r, ) Cn t = Kn (λ r) xp(− )J0 n * e D λef f
2
n * t       (11) 

 
By taking a superposition of particular solutions, we arrive at the general solution: 

(r, ) (λ r ) xp(− λ )C t = ∑
inf

n=1
Kn * J0 n  * e Def f

2
n * t       (12) 

 
To solve for the constants we use our initial condition. For simplicity we are assuming a     Kn            
uniform concentration profile initially, thus:  

(r, ) (λr )C 0 = ∑
inf

n=1
Kn * J0  = Q       (13) 

Now, to obtain values for , we utilize the fact that the eigenfunctions are all     Kn         (λ r)J0 n    
orthogonal. In general, a series of eigenfunctions can be used to represent any arbitrary function               
(in the same way an arbitrary function can be represented by a sum of weighted sinusoids). Using                 
this eigenfunction expansion of the initial condition function (in this case a constant), it can be                
shown that the coefficient values   are given by:Kn   

J (λ r)QdrKn = 2
r J (λ r )f

2 2
1 n f  

∫
rf

0
r 0 n  

The function is a Bessel function of the first kind of order one and is related to by  (x)J1                 (x)J0  
. By solving the integral above, we arrive at an equation for the coefficients :(x) J1 =  − dx

dJ (x)0  
 Kn = 2Q

r J (λ r )f 1 n f
 

 
Thus, the general solution to the diffusion problem in cylindrical coordinates is: 

(r, ) xp(− )C t = rf

2Q ∑
inf

n=1

J (λ r)0 n
λ J (λ r )n 1 n f

* e λ2
n * t        (14) 
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IV. Mathematical Model: Matlab Analysis 

The pdepe function in MATLAB was utilized to plot the numerical solution.[2] The period of the                
IV drip was varied to show the results of one drop every hour, every thirty minutes, and every                  
fifteen minutes. There is some cumulative effect of the concentration, where the drug             
concentration between peaks gradually increases slightly with successive dosage. Increasing the           
frequency of dosage results in a more consistent level of the drug present at any given time, so the                   
frequency could be adjusted based on the therapeutic range for a specific patient. The drug               
concentration decreases quite rapidly in a short distance from the capillary, so the model could               
also be utilized to determine whether delivery of the drug through the vasculature is sufficient               
given a particular distance between the capillary and the tumor. 

V. Results 

 
3D plot r vs. C(r,t)        t vs. C(r,t)     r vs. t 

Fig. 5: Plots generated utilizing pdepe in MATLAB for dosage at 60 minute, 30 minute, and 15 minute 
intervals 
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Fig. 6: Plots generated utilizing pdepe in MATLAB for IV drip modeled as a sinusoidal function and as a 

square function 

VI. Conclusions 

In conclusion, we studied a complex, mathematical model of drug delivery in tumor tissue and               
reduced it substantially to examine simple diffusion profiles in tumor tissue in response to              
different periodic, drug doses. We also showed how the diffusion partial differential equation can              
be solved analytically by separation of variables to yield a closed-form solution. For this problem,               
numerical methods are significantly more powerful because they provide substantially more           
flexibility in how the different components of the model can be varied, such as the boundary                
conditions.  
The constant for plasma concentration and the diffusion coefficient for doxorubicin that were             
utilized in the model were taken from literature values for breast cancer treatment [3,4].              
Therefore, the results of our model could predict the efficacy of doxorubicin in treating a tumor in                 
the breast if the therapeutic concentration for a particular patient were known. The model can be                
extended to use for tumors in different locations in the body if only the diffusion coefficient and                 
the plasma concentration of doxorubicin in a nearby capillary are known for that particular tissue               
type. 

VII. Limitations and Future Directions 

 
This is overall a fairly simplified model to observe only one of many transport phenomena               
involved in delivery of doxorubicin to a tumor. The results of our model yields useful results, but                 
oversimplifies realistic patient vasculature since a single capillary is unrealistic for an advanced             
tumor. The first step to improving this model would be to use superposition with other               
capillaries in specific spatial and temporal parameters determined from patient angiograms or CT.             
This would yield a large mesh over the spatial coordinates of interest (probably ~1cm into the                
healthy tissue surrounding the tumor). Following this step would be the re-addition of the              
convection terms into the solution, and the redefining of parameters in convenient terms that              
relate to common laboratory blood tests for cancer patients. The final and most complicated step               
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would be to change the model from static to dynamic. In this case, the concentration of solute at                  
the source would no longer only be dependent on the input type (such as sine wave versus square                  
wave). Instead, the instantaneous level of solute at the capillary wall would be dependent on the                
fluid dynamics of the blood through the capillary. 
Another future direction for this project would be to research the necessary concentration of              
Doxorubicin in tumor tissue that is required to kill cancerous cells. Using this information, we               
could examine which dosing conditions resulted in the critical drug concentration being reached.  
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IX. Appendix - Matlab Code 
 

global L Co m D 
L = 0.001;  
Co = 630*100^3/10e3; %mg/m^3 
m = 1; 
D = 5.01e-11; %m^2s^-1 
 
x = linspace(0.000001,L, 1000);  
t = linspace(0,3600*12, 1000); 
 
sol_pdepe1 = pdepe(m,@pdefun1,@ic,@bc1,x,t); 
sol_pdepe2 = pdepe(m,@pdefun1,@ic,@bc2,x,t); 
sol_pdepe3 = pdepe(m,@pdefun1,@ic,@bc3,x,t); 
 
figure(1) 
mesh(x,t,sol_pdepe1) 
xlabel('r') 
ylabel('t') 
zlabel('C(r,t)') 
axis([0 L/2 0 3600*2 0 0.5]);  
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title('Diffusion profile for dosage at 60-minute intervals'); 
 
figure(2) 
mesh(x,t,sol_pdepe2) 
xlabel('r') 
ylabel('t') 
zlabel('C(r,t)') 
axis([0 L/2 0 3600*2 0 0.5]);  
title('Diffusion profile for dosage at 30-minute intervals'); 
 
figure(3) 
mesh(x,t,sol_pdepe3) 
xlabel('r') 
ylabel('t') 
zlabel('C(r,t)') 
axis([0 L/2 0 3600*2 0 0.5]);  
title('Diffusion profile for dosage at 15-minute intervals'); 
 
function [c,f,s] = pdefun1(x,t,u,DuDx) 
global D 
 
c = 1/D; 
f = DuDx; 
s = 0;  
end 
 
function u0 = ic(x) 
global Co  
 
u0 = Co*(x==0); 
end 
 
function [pl,ql,pr,qr] = bc1(xl,ul,xr,ur,t) 
global Co 
pl = abs(Co*(sin(2*pi/3600*t))); 
ql = 1;  
pr = 0; 
qr = 1; 
end 
 
function [pl,ql,pr,qr] = bc2(xl,ul,xr,ur,t) 
global Co 
pl = abs(Co*(sin(2*pi/1800*t))); 
ql = 1; 
pr = 0; 
qr = 1; 
end 
 
function [pl,ql,pr,qr] = bc3(xl,ul,xr,ur,t) 
global Co 
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pl = abs(Co*(sin(2*pi/900*t))); 
ql = 1; 
pr = 0; 
qr = 1; 
end 
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